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Most studies published thus far on the four brown midrib (bm) mutants (bm1, bm2, bm3, and bm4)
in maize (Zea mays L.) have focused on one or two individual mutants, and comparisons between
studies have been difficult because of variation in genetic backgrounds, maturity, and source of tissue.
Detailed analyses of the stalks of the four bm single mutants and a bm1—bm2 double mutant in a
common genetic background (inbred A619) revealed structural and compositional changes in their
isolated cell walls and lignins compared to the wild-type inbred. 2D-NMR revealed a significant
presence of benzodioxane units in the bm3isolated lignin. 1D 13C NMR revealed increased aldehyde
levels in the bm1 and bm1—bm2 mutants compared to the wild-type inbred. The bm3 and bm1—bm2
mutants contained less Klason lignin in the isolated cell walls. The bm1, bm3, and bm1—bm2 mutants
contained ~50% less esterified p-coumaric acid with noticeably elevated levels of ferulate in the
bm3 mutant. A difference among bm mutants in the solubility of p-coumaric acid—lignin complexes
during cellulase enzyme treatment was also discovered, suggesting that the bm mutations might
also differ in the structural organization of lignin.

KEYWORDS: Maize; Zea mays L.; brown-midrib mutants ( bm1, bm2, bm3, bm4); lignin; cell wall; NMR;
benzodioxane

INTRODUCTION of hydroxylation and methylation reactions and a reduction of
There are foubrown midrib(bm) mutants known in maize e carboxyl moiety, cinnamic acid is convertegptdrydroxy-

(Zea mayd..). These mutantshm1,bm2,bm3, andom4, are cinnamyl alcohols, alsp referreql tg as monolignols, which can
believed to be Mendelian recessives and recognized by reddishinen undergo polymerization within the cell wall.
brown vascular tissue in the leaves and stems resulting from Detailed analysis of the cell wall composition of then
changes in lignin content and/or compositidi-@). Thebm mutants can provide information on the role of specific genes
mutants are of interest because of their potentially higher in lignin biosynthesis and can improve our understanding of
nutritional value as a forage, presumably because of the lowerlignification. Thebm1mutation was shown to affect the activity
lignin content and more digestible cell wall structuse §). of the enzyme cinnamyl alcohol dehydrogenase (CAD) the
Lignin itself is a complex polymer of phenylpropanoid units last enzyme in the monolignol pathwafigure 1). Using
that hardens the cell walls of xylem tissue to provide mechanical sequence data of the tobacco CAD gene, (Halpin et al.) cloned
strength to the stems and provides a physical barrier againsta maize cDNA encoding CAD. Although thisad cDNA
pests and pathogens. Because lignin is hydrophobic, it decreasegapped closely to thBm1locus of maize, it is not yet clear
the permeability of cell walls and facilitates the transport of whether theBm1gene encodes CAD or controls its activity in
water through the xylem tissue (6). some other way. Vermerris et al. believe that Bm1 locus
The precursors of lignin are synthesized via the phenylpro- acts in a dose-dependent manner on both midrib cell wall
panoid pathway. The first step in the pathway is the deamination composition and the later stages of a plant's developng&int (
of phenylalanine to produce cinnamic acid. Through a number The exact function of th8m2gene is still unknown, although
there has been some speculation that it is associated with the
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cor + stock contained the linked mutati® (purple anthers). After the final
H_O H._0 H._O backcross to A619, plants were selfed and progeny displayingrtide
but not thePl phenotype were selected among the selfed backcross
F5H COMT progeny (k). Thebm3seed was in a W22 background that also carried
_ _ the sugary guU) mutation. Backcrosses to A619 were made for two
| e Hom YoM MmO generations, selectingm3individuals that had normal seeds. These
coniferyl aldehyde S-hydroxyconiferyl aldehyde sinapyl aldehyde were the Onlybm plants not Strictly NILs.
CAD’ on l CAD * on Lignin Isolation and Preparation. Wild-type (inbred A619)bm1,
o bm2,bm3,bm4, andbm1—bm2plants were grown in the field, and
. j comT stalks were harvested when the tassels were just emerging (13-leaf
—_— EE— stage). Entire stalks of four plants were cut in sections, frozen in liquid
OMe ,loigtm MeQ OMe nitrogen and freeze-dried. Before isolation of maize cell wall material
contferyy sicahol s,hyd,-ox,w::ﬂyl ol Sinapy?iohm (CW), the stalk sections were cut_ int&2_ cm pieces and ground to
1 1oy I pass a 2.Q mm screen of a Wlley_ mill (Arthur H._ Thomas Co.,
. - . . . Philadelphia, PA) prior to grinding with a cyclone mill (Udy Corp.,
Figure 1. Partial diagram of the monolignol pathway in angiosperms. Fort Collins, CO). Cell wall and lignin isolations from the maize were
Bolder structures and large-diameter arrows represent preferred pathways essentially as previously described (22). Ground maize stems were
as recently clarified (53-55). The bm1 mutation affects the cinnamyl alcohol extensively extracted with water, methanol, acetone, and chloroform.
dehydrogenase (CAD) enzyme activity, and the bm3 mutation affects the The isolated CWs were ball-milled, digested with crude cellulases
caffeic O-methyltransferase (COMT) enzyme activity. (Cellulysin, Calbiochem-Novabiochem Corp., LaJolla, CA), and ex-
tracted into 96:4 dioxaned®. The dioxane/water fractions were
et al. (11) identified two mutant allelesfi3-1 andom3-2) of lyophilized and saved as maize lignin extract (LE) and maize lignin

the Bm3 gene corresponding to an insertion and a deletion, residue (LR).AsmaII_amount (150 mg_) of_the freeze-dried LE fraction
respectively, in the caffeic aci@-methyltransferase (COMT) was acetylated overnight. Acet_ylated lignin samples were resuspended
gene, one of the last enzymes involved in the production of " 10 ML of methylene chioride (CiEl;) and run through a gel
syringy! units (Figure 1). These data substantiated the reason permeation column (GPC) to remove carbohydrates. The high molecular
yrngy g A ” > - weight fractions from individual samples were collected and vacuum-
for lower OMT activity described earlier ibm3mutant lines dried before they were dissolved /00 uL of acetone-gfor NMR
(12, 13). Previously studied isolated lignins &m3 mutants analysis.
contained 5-hydroxygua_iacy| (5-OH Q_UaiaCYD subunit_s re;ulting Cell Wall Composition. For all CW, LR, and LE samples, Klason
from reduced methylation and exhibited a reduction in the lignin, total uronic acids, total neutral sugars, and phenolic compositions
proportion of syringyl lignin 12, 14, 15). Little is known about were determined. Klason lignin determinations were the ash-corrected
the changes in cell wall composition in then4mutant. Kuc et residue rt_a_maining after total hydrolysis of cell wall polysaccha}rides
al. (2) reported a significant reduction in esterifigtoumaric by @ modified Theander and Westerlund method 23, Total uronic
acid (pCA) inbm mutants over normal plants and an increase acids were estimated colorimetrically with galacturonic acid as the
in p-hydroxybenzaldehyde and vanillin as a result of nitroben- Calibration standard2s, 26). Neutral sugars from total cell wall
zene oxidation reactions. However, the nitrobenzene analysis,Ya/0YSis were determined by high-pressure liquid chromatography

L . . -~ ~’[high-performance anion exchange chromatograpgiylsed ampero-
which is assumed to reflect the nature of lignin aromatic units, metric detection (HPAE-PAD)]. Determination of phenolic acid esters

may be biased due to the oxidation pCA and ferulic acid  followed a modified Ralph et al2f) procedure. CW~50 mg), LR
(FA) to p-hydroxybenzaldehyde and vanillin. (~55 mg), and LE {30 mg) samples were analyzed using internal
A number of investigations have studibthmutants usinga  standards, 2-hydroxycinnamic acid (0.1 mg) for monomers, and 5-5-
variety of techniques (7.3,14,16—19). Typically, these studies  diferulic acid monomethyl ether (0.05 mg) for dime28). Derivatives
would compare théom mutants to normal (wild-type) plants;  of phenolic acids were separated by-gguid chromatography (GLC)
however, individual studies representadmutants in different ~ @s previously described (28). Phenolic monomers inclyzied (cis
genetic backgrounds, making direct comparisons between studiegd trans) and FA ¢is and trans) (Figure 2). Dehydrodimers of
difficult. Different inbred lines can differ substantially in their ~ ferulates (FA dimers) 8-8, 8-5,8-4, and 5-5 are formed by oxidative

lignin content and forage quality20), so making direct radical coupling reactions. The total 8-8 diferulic acid (diFA) is the
9 9¢ q yZv), 9 sum of 8-8 diFA (cyclic) and 8-8 diFA (noncyclic), and the total 8-5

comparisons between _studies using different ge_netic baCk'diFA equals the sum of 8-5 diFA (cyclic), 8-5 diFA (noncyclic), and
grounds may not be valid. Furthermore, studies withlirel 8-5 diFA (decarboxylated) (Figure 2).
(7) andbm3 (14) mutations in different genetic backgrounds  perivatization Followed by Reductive Cleavage (DFRC)Release
showed that the overall effect of the mutations was generally and determination of benzodioxane dimers by the DFRC method has
the same but that the extent of the changes varied. been recently describegd). Benzodioxane lignin degradation products
Here we report the changes in cell wall composition in all were quantified by GLC as previously describe8D). Authentic
four bm mutants (bm1lbm2,bm3, andom4) and eéom1—bm2 guaiacyl and syringyl DFRC benzodioxane dimers were synthesized
double mutant in near-isogenic backgrounds (A619), the excep-by Dr. F. Lu (University of Wisconsin, Madison, WI), as will be

tion beingbm3for reasons described below. described elsewhere.
Nuclear Magnetic Resonance (NMR)1D (*H and *3C) and 2D

NMR experiments were performed at 360 MHz on a Bruker DRX-360
instrument fitted wih a 5 mm*H/broadband gradient probe with inverse
Seed StocksGeneration of thdom1, bm2, andbml1—bm2near- geometry (proton coils closest to the sample). The conditions used for
isogenic lines (NILs) was described in Vermerris and Mclintyre (21). all samples were-100 mg of acetylated isolated lignin in 0.4 mL of
Essentiallybmlandbm2seed were in an A619 (wild-type) background acetone-gl with the central solvent peak as internal refererce,04
following seven backcrosses and one generation of selfing and selectionand dc 29.80). 2D NMR experiments used were standard Bruker
Thebml-bm2double mutant was created by crossing plants from the implementations of gradient-selected versions of inveltdedgtected)
originalbmlseed (bmlanthocyaninlessZed aleuronel) to derived- heteronuclear single quantum coherence (HSQC), HS®Qtl cor-
bm2plants (all in A619 background) followed by selfing of plants from  relation spectroscopy (HSQC-TOCSY), and heteronuclear multiple-
the R seed and selection in the.FDouble-mutants were confirmed  bond correlation (HMBC) experiments. The TOCSY spin lock period
by test crosses to the two single mutartten and bm2). Thebm4 was 100 ms; HMBC experiments used a 100 ms long-range coupling
NIL was similarly generated in an A619 background. Tm4 seed delay. Carbon/proton designations are based on conventional lignin

MATERIALS AND METHODS
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Figure 2. Chemical structures of phenolic acid monomers, p-coumaric
acid (pCA) and ferulic acid (FA), and seven dehydrodiferulic acids (and
derivatives) released from alkaline hydrolysis of maize cell walls (CW),
dioxane/H,0 residues (LR), and dioxane/H,O extracts (LE).
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substantially from that of the control, it is logical that such
structural differences will be present in the whole polymer at
some level.

Maize Cell Walls. Lignin was measured as an acid insoluble
residue using a modified Klason lignin. The CWs from kime3
andbml—bm2mutants had 20 and 10% lower lignin contents
compared to wild-type, whereas the1, bm2 andbm4mutant
CWs contained the same amount of lignin as wild typakle
1). Thebmmutants are generally recognized by a reduction in
lignin content 82); however, as indicated above, the results from
numerous studies vary to the same extent as the number of
genetic stocks investigated. Consequently, differences in the
lignin content of any giverbm mutation compared to wild-
type were quite variable. To what extent genetic or environ-
mental effects change the structure and/or composition of lignin
in bm mutants has not been addressed, although many studies
come to the conclusion that such effects do exig, 9).

The sum of Klason lignins (acid insoluble residues), total
neutral sugars, and uronic acidgaple 1) accounted for 92
95% of thebm mutant cell wall. The rest of the cell wall can
be divided further into acid soluble components including
structural and metabolic proteins and smaller phenolic compo-
nents (e.g., acid soluble lignins, polymerized lignans, and wall-
bound FA angpCA). Compositional data of abmmutants and
wild-type CWs (mg g of CW) are presented ifiable 1. There
were no dramatic differences in total neutral sugars or uronic
acids levels between CW samples. The proportion of individual
neutral sugars (g of CW) was generally the same for &iin
mutants and wild-type CW, between 47 and 50% cellulose (as
determined by glucose) and 227% xylan (as determined by
xylose) with substitution with arabinose varying between 1:8
in the bm3mutant and 1:6 in wild-type maize. Minor shifts in

numbering, and lignin substructure numbering and colors are as rhamnose and mannose were observedfm8andbm4CWs.

previously described (31).

RESULTS AND DISCUSSION

All four bm mutants (bm1bm2,bm3, andom4) and wild-

The uronic acids remained constantat% for all CWs.

CW hydroxycinnamates (Figure 2), esterified and etherified
FA and pCA, were measurable following low- and high-
temperature alkaline hydrolysis (Table 2). Low-temperature

type A619 maize were investigated for structural and compo- hydrolysis (room temperature, 20 h) releases esterified acids,

sitional changes in their cell walls. In addition to the four
individual mutants, @m1—bm2double mutant was analyzed

whereas high temperature hydrolysis (@) 2 h) releases also
those acids phenol-etherified to lignins (33) but not the 8-0-4

to examine the possible additive effects of two mutations on diferulates (which are also ethers}4). FA monomers and

cell wall composition.

dimers (ester-linked) were consistent across all CW samples,

The isolated lignin amounts (percent of the CW and percent with the exception of thdm3CW that had elevated levels of

of the Klason lignin, respectively) were wild-type, 5 and 40%;
bm1, 3 and 18%bm2, 4 and 32%bm3, 4 and 37.%bm4, 4
and 32%; andom1—m2, 3 and 28%. Despite differences in

both. This would indicate a greater amount of FA esterified to
arabinoxylans in thbm3cell walls, although the level of cross-
linking between arabinoxylans, indicated by total FA dimers,

percentages isolated, if an extract from a mutant differs was not higher. Equivalent amounts of FA monomers but a

Table 1. Cell Wall (CW) Composition of Wild-Type and bm Mutants of Maize in A619 Background Averaged over Two Replicates

AB19 bm1 bm2 bm3 bm4 bm1-bm2
Klason lignin (mg g~* of CW) 1303 1302 131+4 104 £ 2 1381 118+3
uronosyls (mg g~* of CW) 41+2 49+2 43+2 37+0 41+2 42+0
neutral sugars (mg g~* of CW)
fucose 03+00 03+0.0 03+0.0 0300 0400 0.3+0.0
arabinose 36.7+0.6 34401 32603 327+10 344+06 33.0+05
rhamnose 11+0.2 08+0.2 09+0.1 03+04 11+0.2 1.0+£0.0
galactose 7001 6.8+0.2 65+0.1 6.9+04 6.7+0.2 65+0.2
glucose 479.1 4718 469.1 491.2 485.7 4725
xylose 226654 252.9+20.3 252.0+4.2 262.1+35 2420+7.1 2449+9.7
mannose 47+01 3200 33%02 3001 2028 31+02
total 755.4 770.1 764.6 796.5 772.2 761.2
cell wall total® 927 949 939 937 951 920

aBased on one replicate. ° Cell wall total = 3 (Klason lignin + uronosyls + total neutral sugars).
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Table 2. Cell Wall (CW) Phenolic Acids Released from Wild-Type and bm Mutants of Maize in A619 Background Averaged over Two Replicates

AB19 bm1 bm2 bm3 bm4 bm1-bm2

monomers (mg g~ of CW)
esterified pCA 14.07 £0.20 8.46 £ 0.02 15.03+0.18 7.90 £0.10 16.14 +0.03 7.89+0.24
esterified FA 4.46 +0.07 5.09 +0.05 524 +0.24 7.29+0.07 4.67 +0.09 4.89+0.01
etherified FA 2.21+0.05 1.85+0.19 2.69+0.24 2.51+0.23 2.36+0.11 1.78£0.19
% wild-type 100 84 122 114 107 81

FA dimers (mg g~* of CW)
8-8 0.25+0.01 0.35+0.00 0.27 £ 0.02 0.34+0.01 0.26 £0.10 0.38 +£0.03
8-5 1.16 £0.07 1.07 £0.06 1.23+0.58 1.10+0.12 1.32+£0.31 0.72+0.11
8-0-4 0.27 £0.01 0.35+0.02 0.20 £0.04 0.29£0.03 0.20 £0.03 0.27 £0.05
5-5 0.17+0.01 .018 £0.00 0.10+0.01 0.13+0.01 0.11+0.01 0.13+0.01
dimer total 1.85 1.96 1.79 1.87 1.90 1.50

FA total? 8.52 8.90 9.72 11.67 8.93 8.17

@ FA total = ) (esterified FA + etherified FA + total FA dimer).

Table 3. Klason Lignin in Dioxane/H,O Residue (LR) and Dioxane/
H,O Extract (LE) as a Percent Cell Wall (CW) Klason Lignin
(Milligrams per Gram of CW)

Table 4. Sum of Dioxane/H,O Residue (LR) and Dioxane/H,O Extract
(LE) Alkaline Extractable Phenolic Acids (Monomers) of Wild-Type and
bm Mutants of Maize in A619 Background

% CW A619  bml bm2 bm3 bm4 bm1-bm2
A619 bml bm2 bm3 bm4  bml-bm2 monomers (mg g~ of CW) (LR + LE)
— esterified pCA 1120 455 10.02 459  10.66 442
Klason lignin LR +L8) 92 4775 63 79 67 esterified FA 113 0.86 135 088 134 103
% CW
esterified pCA 80 54 67 58 66 56
decrease in FA dimers indicated a less cross-linked (between  esterified FA 25 17 26 12 29 21

arabinoxylans) cell wall in thé&dm1—bm2compared to wild-
type. For thebml1 mutant (83% of etherified FA wild-type
levels) and the derivedm1—bm281%) mutant, the FA totals
(esterified plus etherified) were equivalent to those of wild-

type level). Similarly, the esterifiedCA and Klason lignin totals
(LR + LE) in the othetbm mutants were comparatively lower

type. Higher levels of esterified FA had compensated for the than their CW or wild-type levels.

lower levels of etherified FATable 2). Etherified levels in the
double mutant more closely resemble levels found inkime
parental line rather thabm?2. All otherbm mutants showed

Previous reports suggested that litp€A is esterified to
arabinoxylans in maize (338); therefore, thepCA released
during low-temperature hydrolysis must be predominantly

elevated amounts of etherified FA as a percentage of wild-type esterified to lignin in the LR and LE fractions. These results

(bm2, 122%}pm3, 114%; andm4, 107%).

suggest thapCA—lignin complexes were solubilized and lost

p-Coumarate is thought to be mainly associated with lignins in the supernatants during cellulase enzyme treatment. Low-

(35). The levels of esterifie@CA differed depending on the
mutant CW compared to wild-typeTé&ble 2). Levels of
esterifiedpCA in bm2andbm4CWs were comparable to those
in wild-type; however, théom1,bm3, and doublé&ml—bm2
CW levels were~50% of the wild-type, somewhat paralleling

temperature alkaline hydrolysis of the enzyme supernatants did
reveal substantial amounts of esterifigdA. Furthermore, 0.1

N trifluoroacetic acid (TFA) hydrolysis of the maize CWs
releasedpCA—arabinosyl conjugates, detectable by GC-MS
selective ion monitoring, but at insufficient levels for reliable

the decreases in Klason lignin levels. The decrease in esterifiedquantification (data not shown). This mild hydrolysis method

pCA in thebm1-bm2CW could suggest a dose effect inherited
from the bm1 parental line. Large differences in levels of
esterifiedpCA amongommutant cell walls have been reported
previously (2,9, 14, 36, 37).

Maize Lignin Extract and Lignin Residue Fractions.
Striking differences between thenm mutants were revealed by
compositional shifts in their LR and LE fractions. When
enzyme-digested CWs are partitioned into the LE and LR
fractions, the sum of their Klason lignin values should theoreti-
cally add up to the corresponding CW Klason lignin value.
However, the sum for all samples, particularly thra mutants,
was lower (Table 3). Differences in the levels of acid soluble
components lost during hydrolysis and/or differences in indi-

vidual carbohydrate profiles may account for such discrepancies.

Parallel reductions in esterifigdCA were observed in the

should be sufficient to releap€A—arabinosyl conjugates given
that released levels of FAarabinosyl conjugates were compa-
rable to the levels of esterified FA released by low-temperature
alkaline hydrolysis. Because only small amountpG®A were
found esterified to arabinoxylans in the maize samples, the
esterifiedpCA measured after low-temperature hydrolysis from
the supernatants clearly indicates that significant amounts of
pCA—lignin complexes are being solubilized during cellulase
enzyme treatment. These results help to explain why parallel
reductions ofpCA and lignin were observed in then mutant
LR and LE fractions; specifically, the higher the solubility of
pCA—lignin complexes in thémmutants, the greater the loss
after the cellulase enzyme treatment.

Compositional shifts in total neutral sugars existed between
the LR and LE fractions. Cellulose (as measured by glucose)

same maize LR and LE fractions; every maize sample had lowerwas greater in all of the maize LR fractions versus LE fractions.

total esterifiedpCA (LR + LE) than amounts released from
their CW (Table 4). Thebml mutant displayed the greatest
reduction at 46% of its CW level (68% of the wild-type level).
This parallels the reduction observed in a1l mutant Klason
lignin (LR + LE) at 53% of its CW level (51% of the wild-

Total residual cellulose (LR- LE glucose) following cellulase
enzyme treatment correlated to percent cell wall degradability
[(1 — recovered weight/initial weight) mg¢ of CW] (Table

5). Thebm3mutant with the greatest degradability (88%) had
the lowest residual cellulose (LR LE glucose; 40 mg gt of
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Table 5. Sum of Dioxane/H,O Residue (LR) and Dioxane/H,O Extract (LE) Total Neutral Sugars (TNS) of Wild-Type and bm Mutants of Maize in
A619 Background and Percent Cell Wall Digested Following Cellulase Enzyme Treatment (Averaged over Two Replicates)

A619 bm1 bm2 bm3 bm4 bm1-bm2

TNS = LR (mg g~* of CW)
fucose <0.1+£0.0 <0.1+0.0 <0.1+£0.0 <0.1+£0.0 <0.1+0.0 <0.1+£0.0
arabinose 6.6+0.0 50£0.1 6.4+0.0 2301 74+05 50+0.0
rhamnose 04+0.0 0.1+0.0 03+0.1 <0.1+0.1 02+03 03+0.1
galactose 15+0.0 0.9+0.0 1.3+£0.0 0.7+0.0 15+01 1.1+£00
glucose 624+11.4 67.9+29 914+13 38.0+0.7 1312+54 66.7+1.4
xylose 56.8£1.0 60.4+2.8 715£0.7 26.3+£0.9 89.4 £ 4.4 50.2+0.2
mannose 1.6+00 07+0.1 04+0.6 0.7+1.0 0.7+1.0 14+£00
totals 129.4 135.2 171.3 68.0 230.7 1247

TNS - LE (mg g~* of CW)
fucose 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0+0.0
arabinose 16+01 0.9+0.0 14+00 15+00 13+£01 1.1+£00
rhamnose 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0+0.0
galactose 02+0.0 0100 02+0.0 0.1+00 0.1+0.0 0.1+00
glucose 54+0.3 1.9+0.0 29+0.2 19+00 29+0.2 44+0.1
xylose 14.0+0.0 83+0.1 11.9+1.0 10.8+0.5 10.9+0.6 8.8+0.1
mannose 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0
totals 212 11.3 16.3 14.2 15.3 14.4

% degradability? 76 82 77 88 71 82

a Degradability is [(1 — recovered wt/initial wt) mg g1 of CW].

CW), whereas théom4 mutant with the lowest degradability
(71%) had the highest residual cellulose (ERLE glucose; ppm and gs at ~154 ppm) and G (gat ~113 ppm) peak
134 mg g of CW). In general, most of the remaining neutral profiles in the'3C NMR spectra. The exceptions being differ-
sugars, after treatment of the CWs with cellulase, were ences in thdbmlandbm3peak profiles compared to wild-type
partitioned into the LR fraction. Individual neutral sugars were with lower S peaks relative to G peaks. DFRC degradation
not partitioned equally among samples, implying that the products of the maize CWs confirmed the differences in their
hydrolysis of component polysaccharides was not consistentS:G ratios compared to wild-type. Whereas all other maize
acrossbm mutants. For exampldgm4 had the lowest glucose  samples had DFRC monomer S:G ratios between 0.12 and 0.16,
(72%) and xylan (59%) releases, wheréas3had the highest  the S:G ratio of thdom1mutant was 0.09 and that of then3
glucose (92%) and xylan (86%) releases. Equivalent neutral mutant was 0.06. The DFRC method releases S and G
sugars levels (mgd of CW) were observed among the maize monomers by cleaving-ether bonds flanking the unit in lignins.

LE fractions, suggesting that the composition of the neutral  On the basis of previous studies, thenl mutation affects
sugars extracted in the soluble lignin fraction among all maize cinnamyl alcohol dehydrogenase (CAD) and typically has a
samples is the same regardless oftihemutation. The presence  reduced lignin content in mature plan®.(Studies of a variety
and detection of neutral sugars in the LE fraction support an of plants deficient in CAD 41—48) indicated a marked rise in
interaction between carbohydrates and ligranreasonable  aldehydes. The 1B%C NMR spectra of lignin inom1 stems
conclusion because arabinoxylans are known to be cross-linkedconfirmed modest increases in aldehydes relative to levels in
to lignin by FA (39, 40). Uronic acids remained constant across wild-type or any other singlem mutant (Figure 2). Examina-

betweenbm mutants as evidenced by similar $£St ~105

all LR and LE samples.

tion of this aldehyde region revealed the presence of hydroxy-

The reason neutral sugar components are partitioned pre-cinnamaldehydes<193 ppm), benzaldehydes {91 ppm), and

dominantly in the LR fraction may be an organizational issue
whereby their incorporation into the cell wall is dependent on
the respectivémmutation being expressed. As Kuc and Nelson
(1) alluded to in their studies dbm maize, perhaps plants
carrying the mutant alleles lack some function controlling
lignification. These data would suggest that the function lacking
in some of thebom mutants does not control lignification per se
but may controlelementsleading to lignification such as
peroxidase activity or hydrogen peroxide production and avail-
ability. As a result, the lignin polymer is altered in such a way
that incorporation of esterifiepCA is reduced and consequently

8-0-4 cross-products (~187 ppm) between hydroxycinnamal-
dehydes and guaiacy! or syringyl units at much lower levels
than seen in CAD-deficient plants previously studied. The only
otherbmmutant displaying an aldehyde presence was the double
bml-bm2mutant. The aldehyde levels in thenl-bm2mutant
were lower than in the contributingmlparent but nevertheless
present. The low levels of 8-4 cross-products do not allow
easy identification of the S/G nature of units constituting these
peaks as was possible in tH€-enriched tobacco samplet3].

2D HMQC NMR Spectra. Two-dimensional (2D) HMQC
NMR experiments revealed similarity in the composition of the

the structure of the lignin polymer altered at some organizational isolated lignins from the maize samples excluding bm3

(“nonpolymeric”) level not detected by NMR (discussed below).
1I3C NMR Spectra. Qualitative 1D3C NMR spectra of
isolated lignin LE frombm mutants are presented fiigure 3.
These spectra substantiate the significant presenp€Afon
maize lignins as evidenced from the larggsP~123 ppm) and
P2 (~130 ppm) peaks. Th®C NMR spectra also confirm a
decrease imMCA observed in thdml, bm3, andboml—bm2

mutant. Incorporation of 5-hydroxyconiferyl alcohol into the
lignin of the bm3 mutant produced novel benzodioxane units
H (Figure 4). Correlations from a modefans-benzodioxane
compound overlaid on the HMQC spectrum of im3mutant
confirmed the benzodioxane umitidentity (Figure 4). Hwang
and Sakakibara4Q) first suggested that 5-hydroxyconiferyl
alcohol could be incorporated into lignins after identifying a

mutants. The S and G components are not strikingly different benzodioxane dimer in hydrogenolysis products fferaxinus
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ments; the letters A, B, X correspond to structures A, B, and X in Figure
3; G and S are used to represent general guaiacyl and syringyl units; P
represents abundant p-coumarate (pCA) esters acylating lignin side chains;
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(31). Lignin structures are A, S-aryl ether (3-O-4); B, phenylcoumaran
(B3-5); C, resinol (3-5); D, dibenzodioxocin (5-5 and S-O-4/a-0-4); H,
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are emphasized in red with model trans-benzodioxane contours (in yellow)
superimposed on the HMQC spectrum of the bm3 mutant.

mandshuricaRupr. varjaponicaMax. Later, 5-hydroxyguaiacy!
monomers were discovered in thioacidolysis productbrir8

maize (12). The incorporation of 5-hydroxyconiferyl alcohol
into lignins as benzodioxane units was more recently reported

in a COMT-deficient hardwood and legum&0( 41, 50, 51).
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